

DMA2319E Advanced Data Sheet Rev 0.3

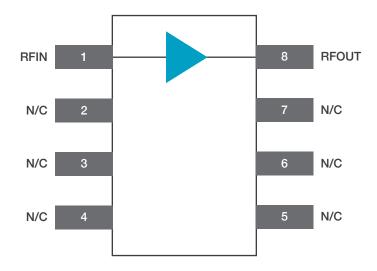
DOCSIS®3.1 Full Duplex Amplifier IC

Key Features

- Provides push-pull amplifier performance as a 75 Ohm Single-Ended I/O amplifier IC (no baluns required)
- DOCSIS® 3.1 Full Duplex (FDX) operation from 108 to 684 MHz
- Extended Spectrum DOCSIS® Downstream PHY Compliance from 750 to 1794 MHz
- Typical Gain = 14.0 dB ±1.0 dB (108 to 684 MHz) and 14.0 dB ± 1.5 dB (750 to 1794 MHz)
- OIP3 >+40 dBm (108 MHz); OIP2 >+70 dBm (108 MHz)
- ≥45 dB MER (DOCSIS® 3.1 OFDM), 108 to 684-MHz, FLAT, uncorrected
- RF Output to +30 dBmV (108 to 684 MHz); Total Composite Power ≈ +46 dBmV
- Single Power Supply Input (+8.5 to +12 Vdc)
- Operating Current = 180 mA Typical (Pdiss ≈ 1.5 Wdc)
- Advanced GaAs Amplifier Technology
- SOIC-8 with Exposed Paddle (EP) SMT Package

Applications

- DOCSIS® 3.1 Full Duplex (FDX) Consumer Premises Equipment (CPE) from 108 to 684 MHz
- DOCSIS® 3.1FDX Capable Gateways, Routers, Servers, Computing Devices, Displays
- DOCSIS® 4.0 HFC/FTTx/RFoG Network Downstream 750 to 1794 MHz
- DOCSIS® Set-Top-Gateway (DSG), Home/SOHO Wireless Gateway Router
- Extended Spectrum DOCSIS® Downstream from 750 to 1794 MHz


Product Description

The DMA2319E is a high-linearity RF amplifier IC designed for exceptionally wide bandwidth (BW), flat gain over BW, and artifact-fee amplification of multi-carrier modulated signals. Employing an amplifier die manufactured on an advanced GaAs process, this linear CATV amplifier is a single-ended, ultra-linear amplifier ideal for high data rate broadband systems. Designed for use as an easily cascadable 75 Ω gain block, its gain flatness of ±1dB from 108 MHz to 684 MHz combined with an OIP2 at 100 MHz of >+70 dBm, make this part ideal for D3.1 full-duplex FDX applications. No baluns are required and the part is available in a small outline, low profile SMT package.

Advanced Data Sheet Rev 0.3

Functional Block Diagram

RF that works for you

Package Pin Out

Pin Number	Description	Notes
1	RF Input	75 Ω Single-Ended 50 Ω Single-Ended (OPTIONAL)
2	No Connect (N/C)	
3	No Connect (N/C)	
4	No Connect (N/C)	
5	No Connect (N/C)	
6	No Connect (N/C)	
7	No Connect (N/C)	
8	RF Output	75 Ω Single-Ended 50 Ω Single-Ended (OPTIONAL) Vdd
Backside Paddle	Ground	Use recommended via pattern to minimize inductance and thermal resistance.

Advanced Data Sheet Rev 0.3

Absolute Minimum and Maximum Ratings

Parameter	Min	Max	Units
Supply	0	+15	Vdc
RF Power at the Input	-	+7	dBm
Case Operating Temperature Range, T _C	-40	+110	°C
Storage Temperature	-65	+150	°C
Soldering Temperature	-	+260	°C
Soldering Time	-	5	seconds

Stresses more than the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

Operating Ranges

Parameter	Min	Тур	Max	Units
RF Input/Output Frequency	108		1794	MHz
Supply Voltage	+8	+8.5	+12	V _{DC}
Case Temperature, T _C	-40	-	+100	°C

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical Specification.

Advanced Data Sheet Rev 0.3

Electrical Specifications

(Ta = +25 °C, Vdd = +8.5 VDC, f = as stated below, 75 Ω Input/Output)

Parameter	Min	Тур	Max	Units	Comments
Gain	13	14	14.5	dB	See Note 1; 108 to 684 MHz
Gain Slope	11	13	14	dB	See Note 1; 750 to 1794 MHz
Gain Flatness	-	-	± 1	dB	F = 108 to 684 MHz
Gain Flatness	-	±1.5	-	dB	F = 750 to 1794 MHz
Noise Figure (NF)	-	3.6	-	dB	F =108 to 1794 MHz
Input Return Loss (IRL)	-	-21	-	dB	F = 108 to 204 MHz
	-	-18	-	dB	F = 750 to 1794 MHz
Output Return Loss (ORL)	-	-16	-	dB	F = 108 to 684 MHz
	-	-15	-	dB	F = 750 to 1794 MHz
Tx Modulation Error Ratio (MER)	-45	-	-	dB	See Note 2, 108 to 684 MHz, FLAT, uncorrected
IIP3	-	+29.5	-	dBm	See Note 1; F = 108 MHz
	-	+26	-	dBm	F = 500 MHz
	-	+22	-	dBm	F = 1000 MHz
OIP3	-	+44	-	dBm	See Note 1; F = 108 MHz
	-	+40	-	dBm	F = 500 MHz
	-	+35	-	dBm	F = 1000 MHz
OIP2	-	+70	-	dBm	See Note 1; F = 108 MHz
	-	+64	-	dBm	See Note 1; F = 500 MHz
OP1dB	-	+25	-	dBm	See Note 1; ±0.5 dBm; F = 108 to 684 MHz
	-	+25	-	dBm	; ±0.5 dBm; F = 1218 MHz
Supply Current	-	180	-	mA	@ +8.5 Vdc

Notes: All specifications as measured using Duet evaluation assembly.

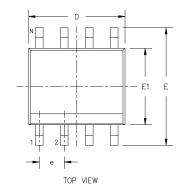
^{1.} Measured in application circuit.

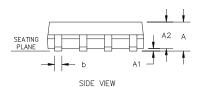
^{2.} Measured IAW Data-Over-Cable Service Interface Specifications (DOCSIS®) Downstream RF Interface Specification, CM-SP-DRFI-I16-170111 and CM-SP-PHYv3.1-I15-180926.

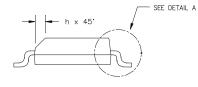
Advanced Data Sheet Rev 0.3

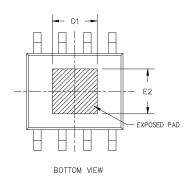
Multi-Carrier Distortion Data

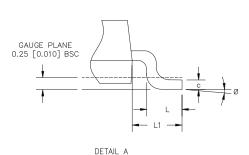
(Typical at +24 °C Ambient Temperature)


XMOD	СТВ	CSO+	CSO-	Unit	Notes
≤ -75	-78	-76	-80	dBc	@288.25 MHz 100 channels PAL-D FLAT; +10 dBmV/ch RFin


Calculated Total Composite Power (TCP) Calculations


Level at Reference Channel	Reference Channel Frequency	Slope, 55.25 to Top Channel	Top Channel Frequency	Digital Above Frequency	Relative Level of Digital	Total Composite Power (TCP)
dBmV	MHz	dB	MHz	MHz	dB	dBmV
30	1794	21	1794	108	0	45.9
30	684	10	684	108	0	46.1


Advanced Data Sheet Rev 0.3


Package Dimensions

	DIMENS	SION IN I	NCHES	DIME	NSION IN	MM
SYM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.056	0.058	0.061	1.42	1.47	1.55
A1	0.001	0.004	0.005	0.025	0.102	0.127
A2	0.051	0.054	0.057	1.30	1.37	1.45
b	0.014	0.016	0.020	0.36	0.41	0.51
С	0.007	0.008	0.010	0.18	0.20	0.25
D	0.191	0.193	0.195	4.85	4.90	4.95
E1	0.151	0.153	0.155	3.84	3.89	3.94
E	0.234	0.240	0.244	5.94	6.10	6.20
е		0.050		1.27		
L	0.020	0.027	0.032	0.51	0.69	0.81
L1	0.042	0.044	0.046	1.07	1.12	1.17
Ø	0,	-	8.	0.	1	8.
h	0.011	0.015	0.019	0.28	0.38	0.48
D1	0.080	-	0.090	2.03	-	2.29
E2	0.080	-	0.090	2.03	_	2.29

- NOTES:

 1. DIMENSION D DOES NOT INCLUDE MOLD FLASH,
 PROTRUSIONS OR GATE BURRS. DIMENSION E1 DOES
 NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.

 2. COPLANARITY APPLIES TO THE TERMINALS.
 COPLANARITY SHALL NOT EXCEED 0.003" [0.08 mm].
- 3. BASED FROM JEDEC MS-012 VARIATION AA.

Advanced Data Sheet Rev 0.3

Ordering Information

Order Number	Temperature Range	Package Description	Component Packaging
DMA2319EP0	-40 to +85 °C	SOIC-8 w/EP	Gel Pak, 1 to 100 each
DMA2319EV0	-40 to +85 °C	SOIC-8 w/EP	1500 each, T&R
DMA2319EPCBA	-40 to +85 °C	75 Ω I/O Evaluation Board (EVB) with F-Type PCB Edge Connectors	EVB Kit with five (5) piece IC sample ESD bag

Duet Microelectronics

575 Route 28, Suite 100 Raritan, NJ 08869 USA 1.908.854.DUET (3838) info@duetmicro.com www.duetmicro.com

Important Notice

Duet Microelectronics LLC reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, Duet Microelectronics assumes no responsibilities for inaccuracies. Duet Microelectronics strongly urges customers to verify that the information they are using is current before placing orders.

Warning

Duet Microelectronics products are not intended for use in life support appliances, devices or systems. Use of a Duet Microelectronics product in any such application without written consent is prohibited.